The Siemens P1 Series Lighting Panelboard with i-3 Control Technology is the next step in engineering innovation for our lighting control product portfolio. The i-3 is a lighting control solution that allows engineers and end users to integrate, install, and interface controllable breakers into their electrical applications; hence the name i-3.

The i-3 is designed to provide a simple, flexible, compact solution for controlling branch lighting circuits remotely via a time schedule or an external signal (i.e. a switch, Building Automation System, etc.). The i-3 reduces energy consumption by providing programmable remote control of our patented SIPODs, which are connected to Siemens BQD frame breakers. This modular design produces a “smart” breaker system that lowers installation costs, minimizes the impact and cost of future system modifications, makes retrofit applications less tedious, and reduces component replacement costs. The i-3 offers a touch screen panel on its system controller that provides a user friendly graphical interface for commissioning and scheduling. i-3 components mount inside a standard P1 lighting panelboard. The i-3 can stand alone or be networked into a larger Building Automation System (BAS).
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Series Lighting Panel</td>
<td>5</td>
</tr>
<tr>
<td>i-3 System Overview</td>
<td>6</td>
</tr>
<tr>
<td>Branch Circuit Breakers</td>
<td>7</td>
</tr>
<tr>
<td>SIPOD™</td>
<td>8-9</td>
</tr>
<tr>
<td>Emergency SIPOD™</td>
<td>10-11</td>
</tr>
<tr>
<td>Controllers</td>
<td>12</td>
</tr>
<tr>
<td>I/O Controller</td>
<td>13</td>
</tr>
<tr>
<td>I/O Configuration Software</td>
<td>14</td>
</tr>
<tr>
<td>System Controller</td>
<td>15</td>
</tr>
<tr>
<td>USB Interface</td>
<td>16</td>
</tr>
<tr>
<td>Communication and Networking Configurations</td>
<td>17</td>
</tr>
<tr>
<td>Dimensions</td>
<td>18</td>
</tr>
<tr>
<td>Ordering Information</td>
<td>19-21</td>
</tr>
<tr>
<td>Integrated Power System Switchboards</td>
<td>22</td>
</tr>
</tbody>
</table>
P1 Series Lighting Panel

Integration
- Small footprint — can stack up to two 42 circuit panels in one section of an IPS Switchboard
- Reduced labor costs -- add to existing P1 installations by simply replacing interior, using the current enclosure.
- Enhanced power management -- control up to eight panels from a single system controller.

Installation
- Modular design with use of standard BQD breakers, add SIPODs only where control is needed
- Reduced wiring complexity over traditional systems
- Reduced labor and installation costs

Interface
- EIB, MODBUS, BACnet and dry contact capable
- USB interface for uploading and downloading panel configurations (Only with System Controller)
- Integrated touch panel w/intuitive commissioning setup wizards (no PC required). PC interface also available.

Qualified Person
This device/system may only be set up and used in conjunction with these instructions. Installation, maintenance and operation of this device/system may only be performed by qualified personnel. Within the context of these instructions, qualified persons are defined as persons who have the skills and knowledge related to the construction and operation of the electrical equipment and installations and have received safety training to recognize and avoid the hazards involved.

Specifications:

<table>
<thead>
<tr>
<th>Panel Amp Ratings:</th>
<th>Up to 250A</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Ratings:</td>
<td>3 phase, 4-wire, 480Y/277V AC</td>
</tr>
<tr>
<td></td>
<td>3 phase, 4-wire, 208Y/120V AC</td>
</tr>
<tr>
<td></td>
<td>1 phase, 3-wire, 120/240V AC</td>
</tr>
<tr>
<td>Panel Size:</td>
<td>18, 30, 42 circuits</td>
</tr>
<tr>
<td>Mains:</td>
<td>Breaker or Lug</td>
</tr>
<tr>
<td>Enclosures:</td>
<td>NEMA 1, 3R, 3R/12, 4 & 4X</td>
</tr>
<tr>
<td>Dimensions: (NEMA 1)</td>
<td>20" wide x 5.75" deep (End walls with knockouts supplied at no charge, if requested at the time of order)</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Flush or Surface</td>
</tr>
<tr>
<td>Front:</td>
<td>Hinged, piano hinged, door-in-door, screw to the box</td>
</tr>
<tr>
<td>Approvals:</td>
<td>UL 916 Energy Management Equipment</td>
</tr>
<tr>
<td></td>
<td>UL 67 Panels</td>
</tr>
<tr>
<td></td>
<td>UL 50 Enclosures</td>
</tr>
<tr>
<td></td>
<td>UL 489 Breakers</td>
</tr>
<tr>
<td></td>
<td>CA Title 24</td>
</tr>
<tr>
<td>Operating Conditions:</td>
<td>Ambient temperature operating: 23°F...104°F (-5°C...40°C)</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature non-operating: -13°F...158°F (-25°C...70°C)</td>
</tr>
</tbody>
</table>

Panel Size:
- 18, 30, 42 circuits

Mains:
- Breaker or Lug

Enclosures:
- NEMA 1, 3R, 3R/12, 4 & 4X

Dimensions:
- (NEMA 1) 20" wide x 5.75" deep (End walls with knockouts supplied at no charge, if requested at the time of order)

Mounting:
- Flush or Surface

Front:
- Hinged, piano hinged, door-in-door, screw to the box

Approvals:
- UL 916 Energy Management Equipment
- UL 67 Panels
- UL 50 Enclosures
- UL 489 Breakers
- CA Title 24

Operating Conditions:
- Ambient temperature operating: 23°F...104°F (-5°C...40°C)
- Ambient temperature non-operating: -13°F...158°F (-25°C...70°C)
i-3 System Overview

- Data Rail (Cover removed for picture)
- MLO/Main Breaker Space
- BQD Breaker
- SI POD
- Ground Bar
- i-3 Controller
- Neutral Extension
- Convenient Front Panel Communication Ports (through deadfront)

List of Restrictions:
- 250A max. bus
- No column mounted panels
- No feed thru or sub feed lugs
- No split bus
- No internal TVSS
Branch Circuit Breakers

BQD breakers are required for all control points. BL breakers may be used for 240V applications involving non-controlled points. BQD breakers without a SIPOD can be used for 277V applications involving non-controlled points.

<table>
<thead>
<tr>
<th>Poles</th>
<th>Amperage (@ 40° C)</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15A</td>
<td>BQD115</td>
</tr>
<tr>
<td></td>
<td>20A</td>
<td>BQD120</td>
</tr>
<tr>
<td></td>
<td>30A</td>
<td>BQD130</td>
</tr>
<tr>
<td>2</td>
<td>15A</td>
<td>BQD215</td>
</tr>
<tr>
<td></td>
<td>20A</td>
<td>BQD220</td>
</tr>
<tr>
<td></td>
<td>30A</td>
<td>BQD230</td>
</tr>
</tbody>
</table>

Interruption Rate (RMS kA)

<table>
<thead>
<tr>
<th>Poles</th>
<th>Volts (AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120 240 277 480</td>
</tr>
<tr>
<td>1</td>
<td>65 - 14 -</td>
</tr>
<tr>
<td>2</td>
<td>- 65 - 14</td>
</tr>
</tbody>
</table>

Breaker Selection for controlled circuits

Note: For non-controlled circuits, the full range of BQD and BL breakers can be used.
The SIPOD™ is a remotely operated electro-mechanical contactor that is attached to a Siemens BQD molded case circuit breaker allowing loads to be switched ON and OFF. The SIPOD has the following features:

- UL Listed 489 CB Accessory
- Same kA rating as the BQD breaker
- Rated for 500,000 + operations at full load

The SIPOD connects to the load side of the breaker by inserting the conductor tab into the breaker load lug. The SIPOD load lug is the same size as the circuit breaker load lug, so load wire connections can easily be attached to the SIPOD load lug.

Manual Override
To simplify testing during installation and commissioning, the SIPOD includes a manual override that forces the main contacts to close. Once the override lever is rotated to the closed position, the contacts remain closed until the SIPOD receives a remote signal from the controller. This feature allows electrical loads to be tested prior to configuring the lighting control system. The manual override of remote commands is temporary until the controller is commissioned and operational. The manual override is purely mechanical, so no electrical feedback is provided. The manual override is not designed to be used to open the SIPOD contacts. This may damage the mechanism.

Maglatch Mechanism
The SIPODs switch ON/OFF via a maglatch mechanism, designed to hold and actuate between the ON and OFF state. This bi-stable operation is achieved with the use of a solenoid, a permanent magnet and a spring to ensure the SIPOD contacts remain in their current state if power is lost. When power is restored, normal operation resumes. Unlike motor driven mechanisms that are prone to high inrush currents, slippage, failure and loud noise due to the operation of the DC motor, the maglatch mechanism requires less power (approximately 1.7A @ 24VDC for 2-25 milliseconds), is faster (breaks continuity in less than 4.5 milliseconds), has a longer mechanical life (more than half a million operations at full load) and is quieter (the only noise is the sound of the contacts striking). SIPOD statistics can be retrieved using the System Controller or the Modbus map. This enables the user to determine when the SIPOD has reached 500,000 operations.
Blow-Closed Mechanism
The blow-closed mechanism is designed to keep the SIPOD contacts closed during short circuit and overload conditions. This is achieved by using a compression spring, a steel yoke and armature that function as a magnet, and two parallel conductors. During normal operation, the spring provides the force required to maintain the contacts in either the open or closed position. During extremely high current levels, the parallel conductors produce a non-saturating force that is proportional to the square of the current and length over which the parallel conductors are acting. This force combines with the forces produced by the spring and magnet, to keep the contacts closed. For more information, please refer to the Blow-Closed Mechanism White Paper. Available on www.usa.siemens.com/i-3

Integrated Electronics
The SIPOD contains a printed circuit board (PCB) that controls the SIPOD contacts and communicates with the controller through a data rail connection. Commands from the controller can open or close the SIPOD contacts, request contact status, or other operational parameters. The PCB also has a microprocessor that minimizes the power supplied from the source and ensures proper operation of the solenoid.

Fast and Easy Maintenance
An exclusive i-3 system feature is the ability to keep operating even if the SIPOD fails. Just remove the SIPOD and use the breaker like a normal uncontrolled breaker. This keeps the lights on while waiting for a replacement SIPOD. If the BQD breaker fails you can quickly get a replacement from your local Siemens distributor.

Danger
Dangerous voltages are present in the equipment which may cause death, serious injury or property damage. Always disconnect and lock-off the equipment before maintenance. Maintenance should be performed only by qualified personnel.

Qualified Person
This device/system may only be set up and used in conjunction with the instructions supplied with the equipment. Installation, maintenance and operation of this device/system may only be performed by qualified personnel. Within the context of these instructions, qualified persons are defined as persons who have the skills and knowledge related to the construction and operation of the electrical equipment and installations and have received safety training to recognize and avoid the hazards involved.

The modularity of the SIPOD/breaker combination reduces system downtime by allowing parts to be mixed and matched. This is not possible with a single unit remotely operated breaker.

How to minimize downtime if a SIPOD fails:
- Remove the SIPOD from the panel
- Connect the load to the load side of the breaker
- The circuit is now restored and controlled by the manual breaker switch
- Order a replacement SIPOD from your Siemens distributor

If a breaker fails:
- Remove the breaker from the panel
- Obtain an off-the-shelf replacement BQD breaker
- BQD breakers are stock items with minimal lead time
Emergency SIPOD™

Emergency Lighting Circuits Application
The i-3 Technology System offers an option to control emergency lighting circuits. This option meets the requirements of the National Electrical Code, 700.12(F).

For this application, i-3 utilizes a standard two-pole BQD breaker coupled with a standard one-pole SIPOD. The assembly is installed in a factory modified P1 Panel-board.

Note: This is not a field modification option. The i-3 system with this option must be ordered with this modification. An i-3 system with emergency lighting circuits can have 2, 4, 6, 8, 10 or 12 circuits factory modified for this application.

The functional circuit is shown below.

Two pole BQD Breakers coupled with one pole SIPOD. Both poles are connected to the same phase on a factory modified panel.
The graphic above depicts the 12 possible panel configurations. Spaces not configured for emergency lighting control may be used for controlled or non-controlled circuits.
Controllers

The i-3 P1 Series Lighting Control Panel has four available controllers:
- Front Panel Touch Screen
- EIB (only to network with system controller on stand-alone system)
- Modbus – for Modbus BAS
- BACnet – for direct connection with Siemens APOGEE

The controllers enable users to implement time schedules, create zones, manage inputs, and display SIPOD and system status. The I/O Board shown in Figure 1 provides the logic for the operation of the entire system.

Battery Backup (System Controller Only)

In the event that power is lost, a factory installed battery will maintain the system clock and panelboard configurations for at least one year. The lithium coin cell battery is rated

Figure 1. I/O Board

The I/O Board input terminals are designed for 3-pin connections where the common terminal can be shared by two 2-wire inputs. These input terminals accept dry contact inputs from external control devices. Input connectors (shown in Figure 2) are provided for the 16 input terminal sets.

Figure 2. Input Connector
I/O Controller

The I/O Controller provides the intelligence required to switch the remote operated breakers ON and OFF. The I/O Controller also enables the P1 lighting panel to accept dry contact inputs and commands over communication networks.

Inputs and Outputs
- 32 Digital, 2-wire Inputs
- 16 Digital, 3-wire Inputs
- 2 Analog Inputs
- 2 Analog Outputs*

Communication Interface
- Modbus RTU
- EIB – BACnet MSTP (for Siemens Building Technologies APOGEE applications only)

Features:
- Configurable zones dependent on number of breakers per zone
- Off Warning Blink

Communication Cables *(Modbus and BACnet applications)*
An RS–232/RS–485 or USB/RS–485 converter kit is required to allow communication between the i-3 I/O Controller and a personal computer. This kit can be owner furnished or ordered through the factory using the following part numbers:
- RS–232–RS485 Kit: 5WG1 715-8XY01
- USB to RS–485 Kit: 5WG1 715-8XY02

In addition to the converter, the kit includes:
- DB9 or USB Cable
- Phoenix Connector

Note: Contact Technical Support for Instructions (Ncscsiemens@sylvania.com)

*Analog functionality is not yet available. Please contact Siemens for information on availability.
I/O Configuration Software (Modbus Only)

The i-3 Configurator Software is a Windows based application that enables the user to easily configure a P1 Series Lighting Control Panel with i-3 Control Technology. Please visit www.usa.siemens.com/i-3 to obtain a free copy of the software after your system is delivered/installed.

The i-3 Control Technology Panel Configurator allows the user to:
- See an accurate graphical panel layout
- Check the status of breakers, inputs, and zones
- Configure zones and I/O mappings
- Import/Export system configurations

System Requirements
- Net Framework 2.0
- Windows XP, 2003, or newer versions

Status Screen: The graphical panel representation on the left indicates which PODs are open (green) or closed (red). The table on the right provides the status of up to 32 digital inputs.

Operations Screen: Allows the user to override the current POD status, create zones, and set I/O mappings.
The System Controller provides an intuitive touch screen panel application with set-up wizards to configure the system. Off-line configuration software is also available from the factory. Please visit www.usa.siemens.com/i-3 to download a free copy.

The System Controller also includes the Modbus TCP/IP communication protocol.

Features:
- Touch Screen Panel
- 6 Setup Wizards (Panels, Breakers, Inputs, Zones, I/O Mapping, and Schedules)
- Password Protection
- User Access Levels
- Event Logs
- Flexible Automatic Daylight Saving Time and Leap Year compensation
- USB interface (details on page 16)
- 20 independent schedules (10 events per schedule)
- Unlimited holiday overrides
- Modbus TCP/IP
USB Interface

The USB interface enables users to upload or download panel configuration files and software updates. This feature simplifies the installation, commissioning, and support of i-3 equipped panelboards. Upgrades will no longer require lighting control “experts”. On occasions when technical assistance is needed, the user simply e-mails the configuration files to technical support. After the issue is remotely diagnosed, the updated file is e-mailed back to the user and uploaded. This reduces downtime and costs.

System Controller Screenshots

For technical support call: 1-877-757-5002

Users can now send configuration files to technical support for remote diagnosis and solutions.
Communication and Networking Configurations

The i-3 System Controller and I/O Controller are capable of communicating via EIB, Modbus RS–485, or dry contacts (Bacnet applications only), the i-3 System Controller communicates via Modbus TCP/IP. This enables communication with other building systems over the building LAN. Each panel in the system acts as a stand-alone unit or a “slave” to a building automation system. One system controller in a panel can network up to 7 additional panels (for a total of 8 panels). The I/O Controller can also be networked with Modbus RS–485 or on a LAN. To network panels, 18–gauge twisted pair wires are used to communicate through EIB. The total maximum cable length allowed for networking panels is 3,300 ft (1,000 meters).

Note: Future versions of the system controller will be Internet capable for remote access and configuration. Contact Siemens sales for more information.

*Depending on maximum distance and network bandwidth.

Note: Up to a maximum of 32 devices may be connected in one loop.

Note: System controllers cannot communicate with each other even if they are on the same LAN.

Note: BACnet is designed for Siemens Building automation APOGEE applications only.
Dimensions

Type 1 Box

Type 3R and 3R/12 Box

Main Lug End Gutter Dimensions

<table>
<thead>
<tr>
<th>Amp Rating</th>
<th>End Gutter</th>
<th>Neutral Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>10.500</td>
<td>11.500</td>
</tr>
<tr>
<td>250</td>
<td>10.500</td>
<td>11.500</td>
</tr>
</tbody>
</table>

Branch Breaker Side Gutter Wiring Space (inches)

<table>
<thead>
<tr>
<th>Branch Breakers</th>
<th>Wiring Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQD + SIPOD Combo</td>
<td>3.25</td>
</tr>
<tr>
<td>BQD</td>
<td>5.5</td>
</tr>
<tr>
<td>BL</td>
<td>6.375</td>
</tr>
</tbody>
</table>

Main Breaker Gutter Dimensions (inches)

<table>
<thead>
<tr>
<th>Main Breaker</th>
<th>Side Gutter</th>
<th>Neutral Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL, BLH, HBL, BQD</td>
<td>8.500</td>
<td>11.500</td>
</tr>
<tr>
<td>ED4, ED6, HD6</td>
<td>6.125</td>
<td>11.500</td>
</tr>
<tr>
<td>QJ2,QJH2, QJ2-H</td>
<td>6.500</td>
<td>11.500</td>
</tr>
<tr>
<td>FD6, FXD6, HFD6</td>
<td>5.250</td>
<td>11.500</td>
</tr>
</tbody>
</table>
Ordering Information

The i-3 is derived from a standard Siemens P1 panel. Please refer to the P1 Panelboard Selection and Application Guide to select the interior, enclosure modifications, and front options. They can be found at: http://www.usa.siemens.com/panelboards.

Keep the following parameters in mind when ordering a P1 Series Panel with i-3 Control Technology:

- 250A Maximum Bus
- No column mounted panels
- No feed through or sub feed lugs
- No Fast-Latch Trim
- No Split Bus
- No 200 % Neutral
- No Internal TVSS**

Summary of Ordering Steps:
1. Select Interior and Main
2. Select Branch Breakers and SIPODs
3. Select the Controller
4. Select Enclosure Modifications and Front Options (from P1 S&A Guide)
5. Contact your local Siemens Sales Representative for pricing and order entry.

How to Order

1. Select Interior and Main
 Select the interior by bus type, panel rating, and the number of branch circuits.

 **Catalog Numbers are for aluminum main bus. For optional copper main bus change "A" in position 11 to "C". For example, a 125A panel with 120/240V 1-phase, 4-wire would have the following catalog number: P1A18ML125ATS. Specify bottom feed by changing the character in position 12 from "T" (top) to "B". Specify flush mount by changing the character in position 13 from "S" (surface) to "F".

 **Can be mounted externally using a branch mounted circuit breaker.

2. Select Branch Breakers and SIPODs.
 BQD breakers are required for all control points.

<table>
<thead>
<tr>
<th>Branch Breakers</th>
<th>Breaker Type</th>
<th>Poles</th>
<th>Available Amp Rating</th>
<th>Max Interrupting Rate (kA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120/240V</td>
</tr>
<tr>
<td>Controllable</td>
<td>BQD</td>
<td>1,2</td>
<td>15, 20</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>Non-Controllable</td>
<td>BL, BQD</td>
<td>1, 2, 3</td>
<td>15, 20, 25, 30,35,40, 45, 50, 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80, 90, 100</td>
</tr>
</tbody>
</table>

* Catalog Numbers are for aluminum main bus.
Ordering Information

3. Select Controller

<table>
<thead>
<tr>
<th>Description</th>
<th>Catalog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O Controller</td>
<td>5WG1 718-8XY01</td>
</tr>
<tr>
<td>I/O Controller (Modbus)</td>
<td>5WG1 718-8X12</td>
</tr>
<tr>
<td>I/O Controller (BACnet)</td>
<td>5WG1 718-8X13</td>
</tr>
<tr>
<td>System Controller</td>
<td>5WG1 718-8XY11</td>
</tr>
<tr>
<td>RS485/R232 Converter*</td>
<td>SWG1 715-8XY01</td>
</tr>
<tr>
<td>RS485/USB Converter*</td>
<td>SWG1 715-8XY02</td>
</tr>
</tbody>
</table>

* Use the Catalog Number provided in the table to specify circuit breakers.

NOTE: Contact sales for availability of the 30A rating.

4. Enclosure Modifications and Front Options

There are several enclosure modifications and front options for the P1 Series Panel with i-3 Control Technology. Please review the P1 Selection and Application Guide for details.

Ordering Example:
3-phase, 4-wire 480Y/277V AC
250 Amp Main circuit breaker
42 Branch Circuits
Bottom Feed
Surface Mounted
Hinged Trim
30 – 20 Amp one-pole Controllable Breaker
SIPOD Combos
3 – 20 Amp two-pole Controllable Breaker
SIPOD Combos
6 – 30 Amp one-pole Non-Controllable Breakers
System Controller

5. Contact your local Siemens Sales Representative for order entry.
For your nearest sales office call us at 1.800.964.4114.
Ordering Information

Panel Configuration Form

<table>
<thead>
<tr>
<th>Panel</th>
<th>Step 1 (from P1 Guide)</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interior and Main Device:</td>
<td>Breakers and SIPODS:</td>
<td>Qty.:</td>
<td>Controller:</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integrated Power System Switchboards

Your Single Source For Simpler, Smaller and Faster Installations

By selecting the P1 Series Lighting Control Panel with i-3 Control Technology for your next Integrated Power System, you gain the ability to stack up to two panels with 42 branch controlled circuits each in one section!

The modular design of the Siemens Integrated Power System (IPS) switchboard allows the user to integrate electrical distribution equipment, power monitoring and environmental controls, that typically mount in multiple enclosures, into one switchboard line-up. Users have the freedom to configure a system that best fits their individual needs.

How IPS can help reduce the cost of your next project:
IPS reduces the number of components required which decreases the amount of time you spend on the job site. It also simplifies field setup and programming. Finally, the small footprint reduces space requirements so you have more room for revenue-generating resources.

Integrated Power System switchboards are built to UL 891 and NEMA PB-2 standards. The standard height of each Integrated Power System sections is 90 inches (Optional 70 inch height available). The minimum depth of the IPS is 13.75 inches. Optional depths of 20, 28, and 38 inches are available.

For more information on IPS and what it can do for you, please contact your nearest Siemens Sales Office at 1.800.964.4114.