Smart grids

The vision of future electricity networks

At a glance
Smart grids are the basis for developing the future transmission and distribution networks as highly flexible, reliable and sustainable systems. Siemens Power Technologies International (Siemens PTI), your provider of network consulting, network planning software and training on the Siemens T&D portfolio, develops optimal network structures and smart grid concepts considering

- Integration of renewable energy sources
- Application of innovative technologies, e.g. energy storage devices, power electronics, e-vehicles (EVs), etc.
- Use of communication technologies to improve observability and controllability of the networks
- Development of intelligent applications, protection and automation concepts
- High security of supply and overall appropriate network performance
- Design of new network structures, e.g. microgrids, DC networks, overlay transmission grids

The challenge
Electrical distribution networks will change more rapidly in the near future than in the past decades. Environmental awareness in the public drives changes in electrical generation towards the increased utilization of renewable energy sources. Additionally, network development and operation have to consider the existing regulatory frameworks.

Due to developments in energy generation and consumption, today’s standard network structures will not be sufficient to provide state-of-the-art security of supply under increasing cost pressure. Thus new requirements for the future distribution networks will derive. The networks will have to be transformed into more intelligent grids to ensure technically appropriate and economically efficient operational performance.

Smart grids also benefit from a large number of new technologies, such as power electronics, communication, energy storage devices, smart metering, electromobility, etc. Their possibilities can be taken advantage of in operating future distribution networks and in forming a smart grid.

Our solution
The drivers for changes in electrical energy supply systems (see figure 1) – together with new technologies and concepts for network equipment, planning and operation – motivate the transition of today’s power systems into smart grids. Increasing the power system’s capabilities for communication, control and automation is a key prerequisite for meeting the upcoming requirements.

Figure 1: Main smart grid drivers

Siemens PTI has long-term experience in planning and operation of various networks and offers high-quality consultancy services and tools based on proven knowledge and a passionate team of technical experts. Siemens PTI provides dedicated design of smart grid structures (figure 2) and detailed analysis of their system performance, which will become important tasks for network operators in the future.
Thereby it is important not only to create an optimal structure for the electrical network, but to also develop a solution taking into account state-of-the-art electrical components like renewable generation, intelligent protection system, information and communication technologies (ICT), energy management system and energy automation, demand site management and smart metering, and further innovations in intelligent household appliances, smart building technologies, electrical public transport, water and waste treatment.

To analyze the future grids new methods and power system planning and simulation tools are developed based on the PSS® Product Suite products. The following calculation methods are used in smart grid studies to ensure a feasible, integrated solution:

- Probabilistic power flow and reliability calculations
- Harmonic analysis considering power electronics, EVs, PV generation, etc.
- Dynamic behavior during normal operation and in island mode
- Protection simulations to ensure safety and security of supply

Moreover, the transition from today’s system into the future smart grid is supported by the elaboration of phased modification plans. In several projects adequate roadmaps have been developed to transform the current network step-by-step into an optimal and intelligent network concept. Also urban development projects created exemplary models for new developments and sustainable living.

Application Example

As an example for a future urban grid, the vision of Masdar City is to build a new development for 100,000 inhabitants and commuters on a desert spot near the city of Abu Dhabi, which uses 100% renewable energy and is CO2 neutral. The key objectives are sustainability and the integration of most innovative technologies regarding energy generation, distribution and consumption.

To achieve CO2 neutrality on an area of about 3 km by 3 km, renewable energy sources are used, as for example most buildings are equipped with photovoltaic generation. Additionally the possibility of reducing consumption by increasing efficiency and by load management shall be applied. In this way the total peak load compared to the typical values in this area can be reduced by the factor of three. To achieve this, most recent technologies and equipment have to be merged into one system.

Initial plans of the electrical network were designed based on standard guidelines for distribution systems – not well suitable to account for Masdar’s special needs. Therefore Siemens PTI developed and proposed a focused and innovative network concept for Masdar City, which considers the unique possibilities of the complete system.

A major challenge was not only to create an optimal structure for the electrical network, but also to achieve the main targets of Masdar

- CO2 neutral energy supply and ensuring high sustainability levels
- Integration of renewable energy sources
- Design of an energy management system
- Integration of electromobility