Wind power

Wind power plant design and system integration

At a glance
The demand for renewable energy, especially wind, is growing ever faster than before, not only in the traditional North American and European countries but all over the world. Developers are pushing the boundaries of technology producing larger and more efficient wind turbines, while the investors are eyeing great deal of new wind energy projects, onshore as well as offshore.

The effect of integrating such large amount of variable and partially predictable wind energy makes electrical power systems more vulnerable and poses challenges for developers as well as network operators.

While developers seek reliable wind power plant design that can guarantee their return-on-investment, network operators demand very strict technical guidelines in order to ensure safe operation.

Siemens Power Technologies International (Siemens PTI), your provider of network consulting, network planning software and training on the Siemens T&D portfolio, combines its renowned expertise and extensive experience in network consulting to offer customers:

- Complete solutions for wind power plant design and system integration
- Ensured, reliable and cost efficient performance of wind power plants

Furthermore, Siemens PTI is the ideal partner during all phases of development and operation of a wind power plant.

The challenge
From the design all the way to implementation of wind power plants (WPP), several technical and economical aspects need to be taken into consideration in each phase.

In the design phase, optimal dimensioning of plant components must be performed in such a way that performance expectations are fulfilled while investment and operation costs are minimized. Plus a suitable protection scheme ensures target availability parameters of the plant.

Network operators require WPPs to perform according to specific technical guidelines included in a grid code. The performance of a WPP at the point of interconnection is directly related to the technical characteristics determined in the design of the internal network of the plant. Consequently a suitable and validated model is required to study the performance of WPP in details or as a whole and make sure it complies with grid code.

Integration of a WPP in a power system imposes certain concerns regarding the reliability, sustainability, and economical viability of transferring the injected power to the load centers. Resolving such concerns requires an expert view over the WPP combined with a clear knowledge of the power system.

Our solution
Siemens PTI offers its network consulting services for the design of WPPs as well as the integration of these plants in the power system.

Our solution bridges the gap between design requirements for the internal network of WPP and reliable performance and control of the plant amid full compliance with the grid code.

Furthermore, our vast experience in generation interconnection studies means assuring optimal integration of the WPPs into the grid.
Wind Power Plant design

The following studies are typically offered for the design of the internal network of WPPs and analysis of the behavior of plants as a whole.

- Network design (cables, transformers, compensation equipment)
- Design of protection systems and definition of protection settings
- Reliability focused design and availability analysis of WPP
- Estimation of transmission losses
- Wind turbine modeling and validation in network simulation tools such as PSS®E and PSS®NETOMAC
- Grid code compliance investigations (Reactive power capability, fault ride-through)
- Power quality including harmonics analysis (on-site measurements and design of mitigation measures) and voltage fluctuation investigation
- Insulation coordination, dimensioning of overvoltage protection devices
- Lightning protection system design
- Neutral grounding design and dimensioning
- Earthing design for personnel safety
- Dimensioning of auxiliary system and equipment
- Arc flash study
- Plant level controller design

Moreover Siemens PTI offers its expertise to support solving technical problems during project realization or afterwards.

Integration of Wind Power Plants in the grid

Siemens PTI also offers network studies for the integration of the WPPs into the grid.

- Power flow study
- Contingency analysis

An essential requirement for any network analysis is a suitable model. For a WPP, a model represents the technical characteristics of the internal network of the plant all the way to the point of interconnection, and includes the individual wind turbine models. Siemens PTI’s PSS® Product Suite offers a wide selection of standard turbine models; in addition Siemens PTI develops customized turbine models and validates them for most accurate and realistic performance.

Harmonics analysis examines how WPP and network harmonics impact each other. To this regard harmonic voltage levels produced by the WPP combined with background harmonics at the point of interconnection are compared with grid code and other standards (e.g. IEC 61000). Mitigation measures, such as design and implementation of harmonic filters, are devised in case the requirements are not met. The overall performance of the WPP with the mitigation measures is then verified.

Figure 1: Network topology of an offshore WPP modeled in PSS®SINCAL

Figure 2: Real and reactive power curves during a fault-ride-through simulation

Figure 3: Harmonic spectrum at PCC