DCIM
Data Center Infrastructure Management

Part 3
Operational Management

Moves Adds and Changes

&

Electrical Infrastructure

November 5, 2013
Presented by

Julius Neudorfer

Sponsored by

SIEMENS

©2013 www.naat.com
Today’s Topics

• Operational Management of
 – Moves Adds and Changes (MAC)
 – Electrical Infrastructure
• Continuously Optimizing Energy Efficiency
• Long-term Benefits of DCIM
• Investment Justification for:
 – Capital, Time, and Labor
Moves, Adds and Changes (MAC)

• Data centers are a *highly fluid* environment
 • Change Control, Work Orders and Asset Tracking *are a major workload issue*
 • Each equipment change can impact the power, cooling, cabling and network requirements for the cabinet, row or zone
 • Depending on the size and scale, typical *manual processes* such as spreadsheets are *no longer practical or cost effective*, as well as a potential *source of errors*
At the Cabinet

While it may seem inconsequential in large data center, even the *improperly managed addition of a single server* can impact many other systems and IT Equipment:

- Space
- Power
- Cooling
- Network
 - Cabling

Reliability
Redundancy
Availability
Resilience
Change Control- IT MAC Planning Tool

• **DCIM** can provide the ability to determine *if* and *where* new IT equipment can be deployed

• Every piece of IT Equipment has **known requirements** for:

 – Space
 – Power
 – Cooling
 – Network
 • Cabling
IT Equipment

• **BladeServer**: Model XYZ-2
 - **Size**: 8 RU
 - **Power**: 5,000 Watts
 - Details PS: 6 x 2000 VA each (3 required) A – B
 - Each PS input 208-240V @ 10A – L6-20P cord
 - **Cooling**:
 - 18,500 BTU - 1,000 CFM
 - **Network**:
 - **Cabling**:
 - SAN: 4 x Fiber Channel-SPF GBIC
 - Network: 6 x 10 Gigabit Ethernet / Copper- 10 GbE
IT Equipment

- **BladeServer**: Model XYZ-2
 - Purchased: 12/24/10
 - Location: Row-15 Cabinet-5
 - Chassis SN# XYZ12345 Asset Tag: ABC123
 - Blades:
 - 1 Dual 2.8 Ghz CPU - **100 Watts**
 - 2 Quad 3.3 Ghz CPU - **180 Watts**
 - X
 - X
 - 16 Quad 3.3 Ghz CPU - 180 Watts

Blade Power Varies

Blades added over time
Power Distribution Management

- Floor PDUs and Electrical Panels
 - Modbus or TCP/IP
 - Main Feed Monitoring (Up-Stream Breaker)
 - Branch Circuit Monitoring
- Coordinate Warning Levels for A-B circuits!
Rack Power Management

- **Rack Power Strips** (unmanaged)
- **Intelligent PDUs** (TCP/IP)
- **Match Plug to Branch Circuit Receptacles**
 - Capacity & Type
 - Match Receptacle Types for **IT PS Cords**
 - Type 🌐 ○
- **Coordinate Warning levels for A-B circuits!**
Improved Availability via Optimized Power Provisioning

• Most facility based outages are related to electrical issues commonly caused by

• **2N Overloading** (A+B paths never to exceed 100%)
 – Borderline Conditions – *User Settable Warning Levels*
 • or phase Imbalances

• **AVOID Cascade A-B Failure**

• At the Branch Circuit to Rack Level PDU
 – **40%** of Branch Circuit Breaker rating (2N)

• At the Rack, Row or Area Distribution Panel
Nameplate Power Provisioning

• Nameplate data alone is not an ideal way to provision electrical circuits or do capacity planning

• Historically, various “rules of thumb” have been commonly used
 – Typically 50-70% of nameplate

• While relatively “safe” in most cases

• It still may not accurately reflect the highly dynamic power variations by modern IT hardware such as Bladeservers –

• Especially when coupled with Virtualization
Distribution Panel Surveys

• A common practice is to do regular surveys of branch circuits in distribution panels
• A manual labor intensive process that can be potential source of *errors*
• or even *Power Disruptions*
• It is a *snapshot* only valid for that moment in time!
Real Time Power Monitoring

- By using *Coordinated* branch circuit monitoring to develop historic data and trends, you are able to have better insight of average and **Peak Draw** (critical for A+B 2N paths) across every cabinet.

- More granular power data can be gathered using
 - Intelligent rack level PDUs
 - Direct polling of every IT device (via SNMP)

- This **improves availability** while optimizing branch circuit utilization and provisioning.
Example:

20 Amp A-B 2N Branch Circuits

A+B Above 16 A

Manual Survey 5:30 am > A=7A + B=7A = Safe?
Cooling Optimization

- Heat Load (kW/ BTU)
- Required Airflow (CFM)
 - Based on IT Device Heat Load (Presumed)
 - Based on IT Device Requirements (Info based)
- Input to CFD Model
 - Airflow Verification

Alternate Location!
Network Management

BladeServer XYZ-2 Connectivity

• **SAN Switch:**
 – 4 Ports - Fiber Channel

• **Ethernet Switch:**
 – 6 ports - 10 Gigabit Ethernet
 • **Network Switch A**
 – VLAN #
 – IP Address/Subnet
 • **Network Switch B**
 – VLAN #
 – IP Address/Subnet
Cable Management

• The accuracy and availability of ports (and their numbers) for all patch panels, cross-connects and jumpers is important to know — before designating a position in a cabinet.

• There should also be a database index about its connected network equipment ports — to avoid a tangled mass of cables.
Benefits of Managed MACs

• By having a **integrated database** of all the related information you can:
 – Avoid impacting **Availability** of IT equipment
 • *For Moved, Added and Existing systems*
 – Avoid Stranded Capacity
 • *Improve Balance of Power and Cooling load*
 – Optimized Workflow- resulting in
 • Accurate Provisioning
 • Speed of Deployment
 - Lower Labor costs
 - **Less Human Error**
Integration of Polling Data Directly from IT Equipment

Some DCIM System offer the ability to accept or poll data *directly* from **IT Systems**:

- **Power Draw (Per IT Device)**
 - Servers, Storage, Switches

- **Cooling**
 - Intake and Exhaust Temperatures - \(\Delta T - \text{CFM}\)

- **Utilization**
 - CPU, Disk Space, Bandwidth, Etc.
Continuously Optimizing Energy Efficiency

• **Cooling** is the largest use of energy in the facility

• **CFD modeling** using Temperature and Airflow information, cooling systems can be intelligently managed and optimized as IT equipment changes occur

• **Capacity Planning** based on historic trends and on existing IT equipment power and cooling data can help optimize operational and energy efficiency

• **Predictive Modeling** allows for optimal placement of new IT equipment
Long-Term Potential Benefits

Facility

• More Accurate Power Provisioning
 – Branch Circuits
 – Receptacle Types

• Cooling
 – Airflow Optimization – Match to Rack Level Heat Load
 – Less “Hot Spots”
 – Less “Overcooling”
 – Better placement of New IT Equipment
 – Improved Energy Efficiency

• Proactive Monitoring & Preventive Maintenance
 – Detect Performance Changes
Improved Operational Availability

Proactive Maintenance

- *Early detection* reduces chances of system or component level failure by of performance degradation

- *Preemptive service* rather than reactive “break-fix” or simple *scheduled* periodic intervals
Cohesive Alignment of IT and Facilities

• IT Asset Management
 – Includes Technical Requirements
 • Drives Provisioning

• Rack-Row Provisioning (MAC)
 – Space
 – Power
 – Cooling
 – Networking

• Better Facilities Resource Allocation
Improved Availability

Predictive Analysis –

IT Equipment

• Insures proper airflow under dynamic IT loading conditions
• Avoids or minimizes creating potential future “hot spots” as IT equipment is added which could reduce IT equipment reliability

• Cooling Failure Scenarios – Impact on IT equipment
 • Airflow and temperature visualization during cooling unit failure
Avoid Stranded Capacity Caused by Mismatch

• Apparent Capacity - Facility Level
 ✔ Space Total / % Available
 ✔ Power Total / % Available
 ✔ Cooling Total / % Available

• Usable Capacity - Row/Rack Level
 ✔ Space
 ✔ Power
 ❌ Cooling

©2013 www.naat.com
Define your Expectations!

• Be clear about your problems, and your expectations of the proposed DCIM system deliverables
• If you have a existing BMS or IT based Asset or Network Management Systems **ASK**
 – What information are they already providing
 • Ask how or if is it being used
 – What are your current systems not providing
 – What processes need improvement
• Which Group is Driving this - Facilities or IT or Both

 – **Caveat** - Ensure your DCIM vendor can integrate with existing BMS or other IT based monitoring systems
Cost Factors

• **Capital Costs**
 – DCIM Hardware and Software
 – Sensor Installation Costs (Physical)
 – Implementation Costs (System Integration)

• **In-House Staff Time and Labor**
 – Project Management
 – Supervision of Implementation and Integration
 – *Vendors require your cooperation and coordination!*
 • Understand and plan for sensor installation challenges - *(i.e. allow for some downtime)*
 – Testing
 – Training
Cost Justification

• Faster, More Accurate Provisioning (MAC)
 – Improved Workflow
 – Improved Asset Management
 – Improved Resource Allocation

• Improved Capacity Utilization and Planning
 – Simulations and Modeling
 – Higher Availability
 – Improved Energy Efficiency
The Bottom Line

• There are multiple benefits to a successful DCIM project, some are directly cost justifiable (i.e. improved energy and operational efficiency), while others are less tangible, such as improved equipment deployment and potential increase of availability.

• It begs the ROI question, how long will it take to recover the cost.

• Each organization is different, the ROI is related to how well (or poorly), disparate information and provisioning processes between IT and Facilities are coordinated.
 – Also influenced by data center size and number of devices to be monitored and managed.
No Trees *(virtual or real)* were hurt or destroyed in the preparation of this presentation.

Thank you

Julius Neudorfer

Sponsored by

SIEMENS
Electric Services

Neil Tubman
Siemens provides reliable and efficient Data Centers that offer maximum uptime, are safe and secure, and meet the growing demand for data storage.
Preventative Maintenance and Testing.
- Preventive maintenance, inspection, and repair and replacement services

Thermography
- Most problems in an Electrical System are preceded by a change in it’s Thermal characteristics (signature).
- Primary predictive maintenance tool for electrical distribution systems.

Real Time Power Monitoring
- The ACCESS Energy Management & Control Systems from Siemens are complete enterprise solutions that help you manage your businesses energy cost and availability.
Siemens Infrastructure & Cities, Inc.

Infrastructure and Cities Sector
1000 Deerfield Parkway
Buffalo Grove, IL 60089

www.usa.siemens.com/electricalservices

Neil Tubman
Western Region Business Development Manager
Siemens Building Technologies
Electrical Services
neil.tubman@siemens.com